📣 MathWorks

MATLAB/Simulink in der Mechatronik So einfach geht's!

MathWorks? Was ist das?

Engineering Challenges Today

 Ambitious, highly-complex projects with short development cycles

- False implementation of (often incomplete) requirements
- Discovery of errors late in development process Costly and time consuming to fix
- Time delays and cost overruns Resulting in loss of reputation/market shares

What is the Most Expensive Project Stage to Find Errors In?

Source: Return on Investment for Independent Verification & Validation, NASA, 2004.

Demonstration Motor-Control

Development Process

Continuous Verification and Validation

Development Process

Multi-Domain Modeling and Algorithm Development

Model-Based Design Early Concept Verification

Development Process

Model-Based Design Rapid Prototyping

Development Process

Floating-Point to Fixed-Point Workflow

Verifying Fixed-Point Algorithms

Verify fixed-point results against floating-point reference

Verify results against original requirements

Automatic Code Generation

Integration

HTML Code Generation Report

Hyperlinks

Code to ModelModel to Code

Code Generation Report	
	12 * Embedded hardware selection: 32-bit Generic
Back Forward Search	13 * Code generation objectives: Unspecified
	14 * Validation result: Not run
Contents	16
	17 #include "Motor_P_Control.h"
Summary	18
Subsystem Report	19 /* External inputs (root inport signals with auto storage) */
<u>Subsystem Report</u>	20 Externalinputs Motor P_control_0;
Code Interface Report	22 /* External outputs (root outports fed by signals with auto storage) */
Traceability Report	23 ExternalOutputs Motor P Control Motor P Control Y;
Statia Cada Matrice Depart	24 SE (A Madal atom Exception 4)
Static Code Metrics Report	25 /* Model step function */ 26 void Motor P Control step(void)
Code Replacements Report	27 {
	<pre>28 /* Outport: '<u><root>/u</root></u>' incorporates:</pre>
Generated Code	29 * Gain: ' <u><root>/Gain</root></u> '
[-] Main file	30 * Inport: <u><root>/v</root></u> 31 t Inport: <u>//Root>/v</u>
L-J Wain file	32 * Sum: '< <u>KOOE>/y</u> '
ert_main.c	33 */
[-] Model files	34 <u>Motor P Control Cu = (Mator P Control U.w - Motor P Control U.y)</u> * 0.1;
Mater D. Cantral a	35 }
Wotor_P_Control.c	36 37 /* Model initialize function */
Motor_P_Control.h	38 void Motor P Control initialize (void)
[+] Utility files (1)	39 {
(1) Other mes (1)	40 /* Registration cole */
	41
	42 (void) memset (void *) & Motor P control U. 0.
	44 sizeof ExternalInp ts Motor P Control));
	45
	46 /* external outputs *
	$\frac{47}{48} = \frac{\text{Motor P Control I}}{48} = 0.0;$
	49
	50 /* Model terminate function */
	double double
(1) $(+) \rightarrow k \rightarrow (1)$
	W Coin U
	Gain
	double
(2
	<u> </u>
	y Ś
	-

Continuous Verification and Validation

Model Based Design **Continuous Verification and Validation**

Model Based Design Continuous Verification and Validation

Model Based Design Subsystem-Level Integration & Testing

Model Based Design System-Level Integration & Testing

Benefits of Model-Based Design

- Models
 - Core of the Development Process
- Unambiguous Description of Requirements
 - Executable Specification
- Fast Evaluation of Design Variants
 - Simulation
- Early Test and Verification
- Automatic Code Generation
- Better Cooperation, Communication and Collaboration
- ⇒ means for quick what/if scenarios
- ⇒ Higher Product Quality

MATLAB EXPO 2014 DEUTSCHLAND

9. Juli – München

Jetzt anmelden: matlabexpo.de

MathWorks

Accelerating the pace

of discovery, innovation, development, and learning

in engineering and science